Issue 33, 2021

Red-light sensitized hole-conducting polymer for energy conversion

Abstract

We report a novel hole conductive polymer with photoactive Os(II) complexes in the side chains. This PPV derivative can be activated upon absorption of red visible light and delivers notable photocurrents when used as photocathode material. Thus, the polymer presents as a stepping stone towards developing soft matter alternatives to NiO photocathodes, which function under visible light irradiation. To show the concept we combine electrical impedance spectroscopy with steady state spectroscopy. As light-driven hole injection from Os complex to the PPV polymer is thermodynamically feasible both based on reductive quenching of photoexcited PPV and based on oxidative quenching of the photoexcited Os chromophores we investigate the impact of illumination wavelengths on the photocathode behavior and photochemical stability of the material. While both blue and red light excitation, i.e., excitation of the chromophoric units PPV and excitation of the metal-to-ligand charge transfer transitions in the side-chain pendant Os chromophores yield cathodic photocurrents, the photochemical stability is drastically enhanced upon red-light excitation. Hence, the results of the investigations discussed show the validity of the concept developing red-light sensitized hole-conducting polymers for energy conversion.

Graphical abstract: Red-light sensitized hole-conducting polymer for energy conversion

Supplementary files

Article information

Article type
Paper
Submitted
08 Jul 2021
Accepted
09 Aug 2021
First published
09 Aug 2021

Phys. Chem. Chem. Phys., 2021,23, 18026-18034

Red-light sensitized hole-conducting polymer for energy conversion

B. Seidler, R. A. Wahyuono, P. Wintergerst, J. Ahner, M. D. Hager, S. Rau, U. S. Schubert and B. Dietzek, Phys. Chem. Chem. Phys., 2021, 23, 18026 DOI: 10.1039/D1CP03114G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements