Issue 35, 2021

Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2

Abstract

Nitric oxide electroreduction reaction (NOER) is an efficient method for NH3 synthesis and NOx-related pollutant treatment. However, current research on NOER catalysts mainly focuses on noble metals and single atom catalysts, while low-cost transition metal dichalcogenides (TMDCs) are rarely considered. Herein, by applying density functional theory (DFT) calculations, we study the catalytic performance of NOER over 2H-MoS2 monolayers with the most common S vacancies and some Mo atoms substituted by transition metal atoms (denoted as TM-MoS2@VS). Our results show that an S vacancy and a heteroatom substitution tend to form a first nearest neighbour (1NN) pair, which greatly improves the NOER catalytic performance of 2H-MoS2. The S vacancy site can trigger NOER by strongly adsorbing a NO molecule and elongating the NO bond, while the heteroatom dopant can assist NOER by tuning the electron donating capability of 2H-MoS2 which breaks the linear scaling relations among key reaction intermediates. At low NO coverage, NH3 can be correspondingly yielded at −0.06 and −0.38 V onset potentials over the Pt- and Au-doped MoS2 catalysts with S vacancies (Pt-MoS2@VS and Au-MoS2@VS). At high NO coverage, N2O/N2 is thermodynamically favored. Meanwhile, the competing hydrogen evolution reaction (HER) is suppressed. Thus, the Pt-MoS2@VS catalysts are promising candidates for NOER. In addition, coupling the substitutional doping of Mo atoms to S vacancies presents great potential in improving the catalytic activity and selectivity of MoS2 for other reactions. In general, the strategy of coupling hetero-metal doping and chalcogen vacancy can be extended to enhance the catalytic activity of other TMDCs.

Graphical abstract: Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2

Supplementary files

Article information

Article type
Paper
Submitted
19 Jun 2021
Accepted
16 Aug 2021
First published
16 Aug 2021

Phys. Chem. Chem. Phys., 2021,23, 19872-19883

Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2

M. Tursun and C. Wu, Phys. Chem. Chem. Phys., 2021, 23, 19872 DOI: 10.1039/D1CP02764F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements