Issue 46, 2021

Phonon transport in graphene based materials

Abstract

Graphene, due to its atomic layer structure, has the highest room temperature thermal conductivity k for all known materials. Thus, it is expected that graphene based materials are the best candidates for thermal management in next generation electronic devices. In this perspective, we first review the in-plane k of monolayer graphene and multilayer graphene obtained using experimental measurements, theoretical calculations and molecular dynamics (MD) simulations. Considering the importance of four-phonon scattering in graphene, we also compare the effects of three-phonon and four-phonon scattering on phonon transport in graphene. Then, we review phonon transport along the cross-plane direction of multilayer graphene and highlight that the cross-plane phonon mean free path is several hundreds of nanometers instead of a few nanometers as predicted using classical kinetic theory. Recently, hydrodynamic phonon transport has been observed experimentally in graphitic materials. The criteria for distinguishing the hydrodynamic from ballistic and diffusive regimes are discussed, from which we conclude that graphene based materials with a high Debye temperature and high anharmonicity (due to ZA modes) are excellent candidates to observe the hydrodynamic phonon transport. In the fourth part, we review how to actively control phonon transport in graphene. Graphene and graphite are often adopted as additives in thermal management materials such as polymer nanocomposites and thermal interface materials due to their high k. However, the enhancement of the composite's k is not so high as expected because of the large thermal resistance between graphene sheets as well as between the graphene sheet and matrix. In the fifth part, we discuss the interfacial thermal resistance and analyze its effect on the thermal conductivity of graphene based materials. In the sixth part, we give a brief introduction to the applications of graphene based materials in thermal management. Finally, we conclude our review with some perspectives for future research.

Graphical abstract: Phonon transport in graphene based materials

Article information

Article type
Perspective
Submitted
26 May 2021
Accepted
20 Aug 2021
First published
21 Aug 2021

Phys. Chem. Chem. Phys., 2021,23, 26030-26060

Phonon transport in graphene based materials

C. Liu, P. Lu, W. Chen, Y. Zhao and Y. Chen, Phys. Chem. Chem. Phys., 2021, 23, 26030 DOI: 10.1039/D1CP02328D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements