Tunable electronic and optical properties in buckling a non-lamellar B3S monolayer†
Abstract
We propose a novel polymorph of a hexagonal B3S monolayer by combing structure swarm intelligence and first-principles calculations. Phonon spectrum analysis and ab initio molecular dynamics simulation indicate that the new structure is dynamically and thermally stable. Furthermore, the structure is mechanically stable and has a satisfactory elastic modulus. Our results show that the B3S monolayer is a semiconductor with strong visible-light optical absorption. More importantly, the electronic properties of the structure are tunable via surface functionalization. For example, hydrogenation or fluorination could transform the monolayer from the semiconducting to metallic state. On the other hand, surface oxidation could significantly enhance both carrier mobility and near-infrared optical absorption. Furthermore, we also discovered that the monolayer possesses satisfactory storage capacity for H2.