Issue 27, 2021

An efficient method for generating property-energy consistent basis sets. New pecJ-n (n = 1, 2) basis sets for high-quality calculations of indirect nuclear spin–spin coupling constants involving 1H, 13C, 15N, and 19F nuclei

Abstract

This paper presents a new method of generating property-energy consistent (PEC) basis sets that can be applied to any arbitrary molecular property. The PEC method generates a basis set that is optimized for the molecular property under interest, providing the least possible total molecular energy. The main algorithm of the PEC approach involves Monte Carlo simulations to generate random exponents in the predetermined range. In this work, the PEC method is introduced in the example of generation of new pecJ-n (n = 1, 2) basis sets suited for high-quality correlated calculations of indirect nuclear spin–spin coupling constants involving the most popular NMR-active nuclei: 1H, 13C, 15N, and 19F.

Graphical abstract: An efficient method for generating property-energy consistent basis sets. New pecJ-n (n = 1, 2) basis sets for high-quality calculations of indirect nuclear spin–spin coupling constants involving 1H, 13C, 15N, and 19F nuclei

Supplementary files

Article information

Article type
Paper
Submitted
05 May 2021
Accepted
14 Jun 2021
First published
15 Jun 2021

Phys. Chem. Chem. Phys., 2021,23, 14925-14939

An efficient method for generating property-energy consistent basis sets. New pecJ-n (n = 1, 2) basis sets for high-quality calculations of indirect nuclear spin–spin coupling constants involving 1H, 13C, 15N, and 19F nuclei

Y. Yu. Rusakov and I. L. Rusakova, Phys. Chem. Chem. Phys., 2021, 23, 14925 DOI: 10.1039/D1CP01984H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements