Issue 30, 2021

Insight into the thermal stability of DNA in hydrated ionic liquids from multi-wavelength UV resonance Raman experiments

Abstract

The utility of ionic liquids (ILs) as alternative solvents for stabilizing and preserving the native structure of DNA over the long term may be envisaged for biotechnological and biomedical applications in the near future. The delicate balance between the stabilizing and destabilizing effects of IL-mediated interactions with the structure of DNA is complex and is still not well understood. This work reports a fundamental study dealing with the effect exerted by cations and anions in imidazolium-based ILs on the thermal structural stability of large nucleic acid molecules. Multi-wavelength UV resonance Raman spectroscopy is used for selectively detecting heat-induced structural transitions of DNA localized on specific base tracts. Our study reveals the establishment of preferential interactions between the imidazolium cations of ILs and the guanine bases in the DNA groove that lead to more effective stacking between the guanine bases even at high temperatures. Interestingly, we observe that this trend for ILs sharing the same chloride anion is further enhanced as the alkyl chain on the imidazolium cation gets shorter. The results from the present investigation lead to a more comprehensive view of the IL-mediated interactions with A–T and G–C base pairs during thermal unfolding.

Graphical abstract: Insight into the thermal stability of DNA in hydrated ionic liquids from multi-wavelength UV resonance Raman experiments

Supplementary files

Article information

Article type
Paper
Submitted
03 May 2021
Accepted
30 Jun 2021
First published
06 Jul 2021

Phys. Chem. Chem. Phys., 2021,23, 15980-15988

Insight into the thermal stability of DNA in hydrated ionic liquids from multi-wavelength UV resonance Raman experiments

B. Rossi, M. Tortora, S. Catalini, J. Vigna, I. Mancini, A. Gessini, C. Masciovecchio and A. Mele, Phys. Chem. Chem. Phys., 2021, 23, 15980 DOI: 10.1039/D1CP01970H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements