Issue 24, 2021

Chemical dynamics study on the gas-phase reaction of the D1-silylidyne radical (SiD; X2Π) with deuterium sulfide (D2S) and hydrogen sulfide (H2S)

Abstract

The reactions of the D1-silylidyne radical (SiD; X2Π) with deuterium sulfide (D2S; X1A1) and hydrogen sulfide (H2S; X1A1) were conducted utilizing a crossed molecular beams machine under single collision conditions. The experimental work was carried out in conjunction with electronic structure calculations. The elementary reaction commences with a barrierless addition of the D1-silylidyne radical to one of the non-bonding electron pairs of the sulfur atom of hydrogen (deuterium) sulfide followed by possible bond rotation isomerization and multiple atomic hydrogen (deuterium) migrations. Unimolecular decomposition of the reaction intermediates lead eventually to the D1-thiosilaformyl radical (DSiS) (p1) and D2-silanethione (D2SiS) (p3) via molecular and atomic deuterium loss channels (SiD–D2S system) along with the D1-thiosilaformyl radical (DSiS) (p1) and D1-silanethione (HDSiS) (p3) through molecular and atomic hydrogen ejection (SiD–H2S system) via indirect scattering dynamics in barrierless and overall exoergic reactions. Our study provides a look into the complex dynamics of the silicon and sulfur chemistries involving multiple deuterium/hydrogen shifts and tight exit transition states, as well as insight into silicon- and sulfur-containing molecule formation pathways in deep space. Although neither of the non-deuterated species – the thiosilaformyl radical (HSiS) and silanethione (H2SiS) – have been observed in the interstellar medium (ISM) thus far, astrochemical models presented here predict relative abundances in the Orion Kleinmann-Low nebula to be sufficiently high enough for detection.

Graphical abstract: Chemical dynamics study on the gas-phase reaction of the D1-silylidyne radical (SiD; X2Π) with deuterium sulfide (D2S) and hydrogen sulfide (H2S)

Supplementary files

Article information

Article type
Paper
Submitted
15 Apr 2021
Accepted
05 Jun 2021
First published
13 Jun 2021

Phys. Chem. Chem. Phys., 2021,23, 13647-13661

Author version available

Chemical dynamics study on the gas-phase reaction of the D1-silylidyne radical (SiD; X2Π) with deuterium sulfide (D2S) and hydrogen sulfide (H2S)

S. J. Goettl, S. Doddipatla, Z. Yang, C. He, R. I. Kaiser, M. X. Silva, B. R. L. Galvão and T. J. Millar, Phys. Chem. Chem. Phys., 2021, 23, 13647 DOI: 10.1039/D1CP01629F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements