Issue 20, 2021

Mechanisms of methyl formate production during electron-induced processing of methanol–carbon monoxide ices

Abstract

The formation of methyl formate (CH3OCHO) upon electron irradiation of mixed ices of carbon monoxide (CO) and methanol (CH3OH) has been monitored by post-irradiation thermal desorption spectrometry (TDS). The energy dependence of the product yields obtained with electron energies between 3 and 18 eV was studied. These energies are characteristic of secondary electrons that are released in vast numbers under the effect of ionizing radiation. Our results reveal that the reactions leading to methyl formate are initiated by a number of different electron–molecule interactions that produce CH3O˙ radicals. Dissociative electron attachment (DEA) to CH3OH around 5.5 eV and neutral dissociation (ND) above 7 eV release CH3O˙ radicals that can add to CO to initiate a reaction sequence leading to formation of methyl formate. Around 10 eV, DEA to CO yields an oxygen radical anion that reacts with CH3OH to also produce CH3O˙ radicals. Alternatively, CH3OH can also release H˙ radicals upon both DEA and ND. These can also add to CO to form HCO˙ radicals as an intermediate to formaldehyde (H2CO), which was also investigated to unravel the reaction mechanisms leading to formation of methyl formate. The recombination of HCO˙ and CH3O˙ as minority radical species is considered as an alternative but less probable pathway to the formation of methyl formate. To the best of our knowledge, this is the first study showing considerable contributions of DEA to the formation of methyl formate in CH3OH containing ices. Thus, our study has important implications for current astrochemical models.

Graphical abstract: Mechanisms of methyl formate production during electron-induced processing of methanol–carbon monoxide ices

Supplementary files

Article information

Article type
Paper
Submitted
22 Mar 2021
Accepted
06 May 2021
First published
06 May 2021

Phys. Chem. Chem. Phys., 2021,23, 11649-11662

Mechanisms of methyl formate production during electron-induced processing of methanol–carbon monoxide ices

F. Schmidt, P. Swiderek, T. Scheele and J. H. Bredehöft, Phys. Chem. Chem. Phys., 2021, 23, 11649 DOI: 10.1039/D1CP01255J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements