Issue 21, 2021

Comparative study of polymer looping kinetics in passive and active environments

Abstract

Intra-chain looping in complex environments is significant in advancing our understanding of biological processes in life. We adopt Langevin dynamics simulations to perform a comparative study of polymer looping kinetics in passive and active environments. From the analysis of looping quantities, including looping-unlooping times and looping probabilities, we unraveled the intriguing effects of active crowder size, activity and crowding. Firstly, we figured out the phase diagram involving a novel facilitation-inhibition transition in the parameter space of active crowder size and active force, and the two-fold roles of activity are clarified. In particular, we find that active particles of a size comparable to the polymer monomer are most favorable for facilitated looping, while those with a similar size to the polymer gyration radius impede the looping most seriously. Secondly, the underlying looping mechanisms in different active crowder size regimes are rationalized by the interplay among diffusion, polymer conformational change and the free-energy barrier. For small active crowders, activity significantly promotes end-to-end distance diffusion, which dominantly facilitates both looping and unlooping processes. In the case of moderate active crowders, the polymer chain suffers from prominent swelling, and thus inevitable inhibited looping will occur. For large active crowders, activity induces a counterintuitive non-cage effect on the looping kinetics, through yielding a higher effective temperature and larger unlooping free-energy barrier. This is in sharp contrast to the caging phenomena observed in passive media. Lastly, the volume-fraction dependence of the looping quantities in an active bath demonstrates dramatic discrepancies from that in a passive bath, which highlights the contrasting effects of activity and crowding.

Graphical abstract: Comparative study of polymer looping kinetics in passive and active environments

Article information

Article type
Paper
Submitted
08 Feb 2021
Accepted
02 May 2021
First published
06 May 2021

Phys. Chem. Chem. Phys., 2021,23, 12171-12190

Comparative study of polymer looping kinetics in passive and active environments

B. Zhang, T. Lei and N. Zhao, Phys. Chem. Chem. Phys., 2021, 23, 12171 DOI: 10.1039/D1CP00591J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements