Issue 15, 2021

The oxidation mechanism of gas-phase ozonolysis of limonene in the atmosphere

Abstract

Limonene with endo- and exo-double bonds is a significant monoterpene in the atmosphere and has high reactivity towards O3. We investigated the atmospheric oxidation mechanism of limonene ozonolysis using a high level quantum chemistry calculation coupled with RRKM-ME kinetic simulation. The additions of O3 can take place at both the endo- and exo-double bonds with a branching ratio of 0.87 : 0.13, forming four major highly energized CIs* (named Syn-2a*, Syn-2b*, Anti-2b* and Anti-2c*) with the relative higher fractions of 0.21 : 0.35 : 0.27 : 0.11. A yield of 4% for Limona-ketone was obtained as well. For the unimolecular isomerization pathways of limonene + O3 → POZs → CIs* → SOZ, VHP, or dioxirane, five, one, or none of the internal rotations are treated as hindered internal rotors for CIs*. We obtained percentages of 0.59 : 0.18 : 0.14 in total for separate isomerization routes in the formation of VHPs, dioxirane and SOZs from CIs* using the fourth-order Runge–Kutta method. Additionally, a yield of ∼5% was acquired for stabilized CIs compiling the fractions of different addition routes. About ∼10% of stabilized Anti-2b would isomerize to VHP and 90% would isomerize to SOZs. Isomerization to VHPs dominates the fate of stabilized Syn-2a, Syn-2b and Anti-2c. The overall yield of OH radicals was 0.61. Our study suggested a yield of 0.17 for stabilized SOZs and 0.18 for dioxirane, although both their fates are ambiguous.

Graphical abstract: The oxidation mechanism of gas-phase ozonolysis of limonene in the atmosphere

Supplementary files

Article information

Article type
Paper
Submitted
07 Nov 2020
Accepted
19 Mar 2021
First published
23 Mar 2021

Phys. Chem. Chem. Phys., 2021,23, 9294-9303

The oxidation mechanism of gas-phase ozonolysis of limonene in the atmosphere

L. Wang and L. Wang, Phys. Chem. Chem. Phys., 2021, 23, 9294 DOI: 10.1039/D0CP05803C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements