Issue 9, 2021

HPO42− enhanced catalytic activity of N, S, B, and O-codoped carbon nanosphere-armored Co9S8 nanoparticles for organic pollutants degradation via peroxymonosulfate activation: critical roles of superoxide radical, singlet oxygen and electron transfer

Abstract

In this study, we report a facile synthesis of a novel N, S, B, and O-codoped carbon nanosphere-armored Co9S8 nanoparticle composite (Co9S8@NSBOC) and its superior activation performance toward peroxymonosulfate (PMS) for methylene blue (MB) and ofloxacin degradation. The effects of various experimental parameters and the general applicability of the catalyst were investigated. Particularly, Co9S8@NSBOC exhibited high catalytic activity in a wide pH range of 3–12 and HPO42− exhibited a synergic catalytic effect with Co9S8@NSBOC in the degradation system. Radical quenching tests, EPR measurements and electrochemical analysis demonstrated that the degradation mechanism of pollutants in the Co9S8@NSBOC/PMS system included both radical and non-radical pathways, in which ˙O2, 1O2 and electron transfer played dominant roles. Co2+, S2−, carbon defects, C[double bond, length as m-dash]O/C–O–C, pyridinic-N, graphitic-N, BC2O and C–S–C species on Co9S8@NSBOC, all contributed to PMS activation. The degradation pathways of MB and ofloxacin were proposed based on HPLC-MS/MS analysis of their degradation intermediates. This work not only presents a facile and practical synthetic method of cobalt sulfide-coupled multi-heteroatom-doped carbocatalysts, but also provides useful insights into their active sites and activation mechanisms toward PMS activation.

Graphical abstract: HPO42− enhanced catalytic activity of N, S, B, and O-codoped carbon nanosphere-armored Co9S8 nanoparticles for organic pollutants degradation via peroxymonosulfate activation: critical roles of superoxide radical, singlet oxygen and electron transfer

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2020
Accepted
05 Feb 2021
First published
05 Feb 2021

Phys. Chem. Chem. Phys., 2021,23, 5283-5297

HPO42− enhanced catalytic activity of N, S, B, and O-codoped carbon nanosphere-armored Co9S8 nanoparticles for organic pollutants degradation via peroxymonosulfate activation: critical roles of superoxide radical, singlet oxygen and electron transfer

G. Zhu, J. Zhu, Q. Liu, X. Fu, Z. Chen, K. Li, F. Cao, Q. Qin and M. Jiao, Phys. Chem. Chem. Phys., 2021, 23, 5283 DOI: 10.1039/D0CP04773B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements