Issue 38, 2021

Wireless electrochemiluminescence at functionalised gold microparticles using 3D titanium electrode arrays

Abstract

Wireless electrochemiluminescence is generated using interdigitated, 3D printed, titanium arrays as feeder electrodes to shape the electric field. Gold microparticles (45 μm diameter), functionalised with 11-mercaptoundecanoic acid, act as micro-emitters to generate electrochemiluminescence from [Ru(bpy)3]2+, (bpy is 2,2′-bipyridine) where the co-reactant is tripropylamine. The oxide coated titanium allows intense electric fields, whose distribution depends on the geometry of the array, to be created in the absence of deliberately added electrolyte. COMSOL modelling and long exposure ECL imaging have been used to map the electric field distribution. Significantly, we demonstrate that by controlling the surface charge of the gold microparticles through the solution pH, the light intensity can be increased by a factor of more than 10.

Graphical abstract: Wireless electrochemiluminescence at functionalised gold microparticles using 3D titanium electrode arrays

Supplementary files

Article information

Article type
Communication
Submitted
22 Feb 2021
Accepted
09 Apr 2021
First published
15 Apr 2021

Chem. Commun., 2021,57, 4642-4645

Wireless electrochemiluminescence at functionalised gold microparticles using 3D titanium electrode arrays

S. F. Douman, D. Collins, L. R. Cumba, S. Beirne, G. G. Wallace, Z. Yue, E. I. Iwuoha, F. Melinato, Y. Pellegrin and R. J. Forster, Chem. Commun., 2021, 57, 4642 DOI: 10.1039/D1CC01010G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements