A large, square-shaped, DNA origami nanopore with sealing function on a giant vesicle membrane†
Abstract
Intaking molecular information from the external environment is essential for the normal functioning of artificial cells/molecular robots. Herein, we report the design and function of a membrane nanopore using a DNA origami square tube with a cross-section of 100 nm2. When the nanopore is added to a giant vesicle that mimics a cell membrane, the permeation of large external hydrophilic fluorescent molecules is observed. Furthermore, the addition of up to four ssDNA strands enables size-based selective transport of molecules. A controllable artificial nanopore should facilitate the communication between the vesicle components and their environment.