Photothermal catalysts for hydrogenation reactions
Abstract
Hydrogenation reactions are an important process in today's chemical industry. Typically, hydrogenation reactions involve the removal of an unsaturated bond in olefins or other polyenes via thermal catalysis using hydrogen. As hydrogenation reactions are often carried out at temperatures up to several hundred degrees, they require significant energy input which typically comes from burning fossil fuels. In order to conserve fossil fuels and reduce CO2 emissions, researchers are now developing photothermal catalysts for hydrogenation reactions, which harness concentrated sunlight to achieve the required reaction temperatures or introduce sunlight into thermal-driven reaction systems to reduce the reaction temperatures. Photothermal catalysts thus need to be able to efficiently absorb sunlight, whilst also being able to drive the desired hydrogenation reaction with high activity and selectivity. In this review, we summarize recent research aimed at the development of photothermal catalysts for CO2/CO hydrogenation and alkene/alkyne/aromatic hydrogenation. Particular emphasis is placed on uncovering the reaction mechanisms at the molecular level, which in turn guides the rational design of photothermal catalysts with better performance.