Issue 3, 2021

Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for efficient oral insulin delivery

Abstract

The intestinal epithelial and mucus barriers on the gastrointestinal tract limit the bioavailability of oral protein or peptide drugs. Therefore, efficient mucus permeability and cellular internalization are required properties for oral delivery systems. To overcome these two obstacles, porous silicon nanoparticles were modified with poly (pyridyl disulfide ethylene phosphate/sulfobetaine) polymers to make P(PyEP-g-SBm)n-AmPSiNPs (m = 0.1, 0.2, 0.3 and n = 10, 20, 30) nanoparticles (NPs). The insulin-loaded P(PyEP-g-SB)-AmPSiNPs showed favorable stability and good biocompatibility in vitro. The zwitterionic dodecyl sulfobetaine (SB) coated nanoparticles improved the mucus permeability. P(PyEP-g-SBm)20 with the optimal conjugated ratio (m = 0.3) of SB units was determined by evaluating the mucus diffusion rate of NPs. The cellular uptake of P(PyEP-g-SB0.3)n-AmPSiNPs (n = 10, 20, 30) was much higher than AmPSiNPs in the presence of inhibitors (N-acetylcysteine solution and sodium chlorate) (p < 0.01) due to the enhanced charge shielding effect of P(PyEP-g-SB) modification. The P(PyEP-g-SB0.3)20-AmPSiNPs showed about 1.4–1.7 fold increase in the apparent permeability of insulin across Caco-2/HT-29-MTX cell monolayers, compared to AmPSiNPs (p < 0.01). Finally, the in vivo study showed that insulin-loaded P(PyEP-g-SB0.3)20-AmPSiNPs generated 20% reduction of the blood glucose level with an 2-fold increase in oral bioavailability. These suggested that zwitterionic polyphosphoester modified porous silicon nanoparticles, which were of enhanced mucus permeability and cellular internalization, represent a promising carrier for oral delivery of peptide and protein.

Graphical abstract: Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for efficient oral insulin delivery

Supplementary files

Article information

Article type
Paper
Submitted
16 Oct 2020
Accepted
05 Nov 2020
First published
06 Nov 2020

Biomater. Sci., 2021,9, 685-699

Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for efficient oral insulin delivery

R. Rao, X. Liu, Y. Li, X. Tan, H. Zhou, X. Bai, X. Yang and W. Liu, Biomater. Sci., 2021, 9, 685 DOI: 10.1039/D0BM01772H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements