Single-chip based contactless conductivity detection system for multi-channel separations
Abstract
In this work, the design and characterization of a multi-cell capacitively coupled contactless conductivity detection system are described. The operation and simultaneous acquisition from 3 detector cells are demonstrated, however, the system is capable of supplying 8 detection cells and can be easily upgraded to maintain 64 capacitively coupled contactless conductivity detection cells. On performing flow-injection analysis, the system recorded as low as 0.01 mM of acetic acid, phosphoric acid, NaH2PO4, and Na2B4O7 solutions in water. The instrument was also capable of recording and distinguishing different mixtures of organic solvents: (a) methanol–acetonitrile, (b) hexane–acetone. The designed detection system is expected to be used coupled with multi-channel separation devices for monitoring simultaneous processes.