Issue 15, 2021

Insight into metastatic oral cancer tissue from novel analyses using FTIR spectroscopy and aperture IR-SNOM

Abstract

A novel machine learning algorithm is shown to accurately discriminate between oral squamous cell carcinoma (OSCC) nodal metastases and surrounding lymphoid tissue on the basis of a single metric, the ratio of Fourier transform infrared (FTIR) absorption intensities at 1252 cm−1 and 1285 cm−1. The metric yields discriminating sensitivities, specificities and precision of 98.8 ± 0.1%, 99.89 ± 0.01% and 99.78 ± 0.02% respectively, and an area under receiver operator characteristic (AUC) of 0.9935 ± 0.0006. The delineation of the OSCC and lymphoid tissue revealed by the image formed from the metric is in better agreement with an immunohistochemistry (IHC) stained image than are either of the FTIR images obtained at the individual wavenumbers. Scanning near-field optical microscopy (SNOM) images of the tissue obtained at a number of key wavenumbers, with high spatial resolution, show variations in the chemical structure of the tissue with a feature size down to ∼4 μm. The image formed from the ratio of the SNOM images obtained at 1252 cm−1 and 1285 cm−1 shows more contrast than the SNOM images obtained at these or a number of other individual wavenumbers. The discrimination between the two tissue types is dominated by the contribution from the 1252 cm−1 signal, which is representative of nucleic acids, and this shows the OSCC tissue to be accompanied by two wide arcs of tissue which are particularly low in nucleic acids. Haematoxylin and eosin (H&E) staining shows the tumour core in this specimen to be ∼40 μm wide and the SNOM topography shows that the core centre is raised by ∼1 μm compared to the surrounding tissue. Line profiles of the SNOM signal intensity taken through the highly keratinised core show that the increase in height correlates with an increase in the protein signal. SNOM line profiles show that the nucleic acids signal decreases at the centre of the tumour core between two peaks of higher intensity. All these nucleic acid features are ∼25 μm wide, roughly the width of two cancer cells.

Graphical abstract: Insight into metastatic oral cancer tissue from novel analyses using FTIR spectroscopy and aperture IR-SNOM

Article information

Article type
Paper
Submitted
24 May 2021
Accepted
01 Jul 2021
First published
05 Jul 2021
This article is Open Access
Creative Commons BY-NC license

Analyst, 2021,146, 4895-4904

Insight into metastatic oral cancer tissue from novel analyses using FTIR spectroscopy and aperture IR-SNOM

B. G. Ellis, C. A. Whitley, S. Al Jedani, C. I. Smith, P. J. Gunning, P. Harrison, P. Unsworth, P. Gardner, R. J. Shaw, S. D. Barrett, A. Triantafyllou, J. M. Risk and P. Weightman, Analyst, 2021, 146, 4895 DOI: 10.1039/D1AN00922B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements