Issue 12, 2021

MS2 device: smartphone-facilitated mobile nucleic acid analysis on microfluidic device

Abstract

Mobile sensing based on the integration of microfluidic devices and smartphones, so-called MS2 technology, has enabled many applications over recent years and continues to stimulate growing interest in both research communities and industries. In particular, MS2 technology has been proven to be able to be applied to molecular diagnostic analysis and can be implemented for basic research and clinical testing. However, the currently reported MS2-based nucleic acid analysis system has limited use in practical applications, because it is not integrated with quantitative PCR, multiplex PCR, and isothermal amplification functions, and lacks temperature control, image acquisition and real-time processing units with excellent performance. To provide a more universal and powerful platform, we here developed a novel MS2 device by integrating a thermocycler, a multi fluorescence detection unit, a PCR chip, an isothermal chip, and a smartphone. The MS2 device was approximately 325 mm (L) × 200 mm (W) × 200 mm (H) in volume and only 5 kg in weight, and showed an average power consumption of about 38.4 W. The entire nucleic acid amplification and analysis could be controlled through a self-made smartphone App. The maximum heating and cooling rates were 5 °C s−1 and 4 °C s−1, respectively. The entire PCR could be completed within 65 min. The temperature uniformity was less than 0.1 °C. Besides, the temperature stability over time (30 min) was within ±0.04 °C. Four optical channels were integrated (FAM, HEX, TAMRA, and ROX) on the MS2 device. In particular, the PCR-based detection sensitivity reached 1 copy per μL, and the amplification efficiency was calculated to be 106.8%. Besides, the MS2 device also was compatible with multiplex PCR and isothermal amplification. In short, the MS2 device showed performance consistent with that of traditional commercial equipment. Thus, the MS2 device provides an easy and integrated experimental platform for molecular diagnostic-related research and potential medical diagnostic applications.

Graphical abstract: MS2 device: smartphone-facilitated mobile nucleic acid analysis on microfluidic device

Supplementary files

Article information

Article type
Paper
Submitted
02 Mar 2021
Accepted
25 Mar 2021
First published
30 Mar 2021

Analyst, 2021,146, 3823-3833

MS2 device: smartphone-facilitated mobile nucleic acid analysis on microfluidic device

X. Wu, J. Pan, X. Zhu, C. Hong, A. Hu, C. Zhu, Y. Liu, K. Yang and L. Zhu, Analyst, 2021, 146, 3823 DOI: 10.1039/D1AN00367D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements