Jump to main content
Jump to site search


Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges

Author affiliations

Abstract

Exosomes are nano-sized extracellular vesicles that serve as a communications system between cells and have shown tremendous promise as liquid biopsy biomarkers in diagnostic, prognostic, and even therapeutic use in different human diseases. Due to the natural heterogeneity of exosomes, there is a need to separate exosomes into distinct biophysical and/or biochemical subpopulations to enable full interrogation of exosome biology and function prior to the possibility of clinical translation. Currently, there exists a multitude of different exosome isolation and characterization approaches which can, in limited capacity, separate exosomes based on biophysical and/or biochemical characteristics. While notable reviews in recent years have reviewed these approaches for bulk exosome sorting, we herein present a comprehensive overview of various conventional technologies and modern microfluidic and nanotechnological advancements towards isolation and characterization of exosome subpopulations. The benefits and limitations of these different technologies to improve their use for distinct exosome subpopulations in clinical practices are also discussed. Furthermore, an overview of the most commonly encountered technical and biological challenges for effective separation of exosome subpopulations is presented.

Graphical abstract: Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges

Back to tab navigation

Article information


Submitted
06 Jan 2021
Accepted
09 May 2021
First published
10 May 2021

Analyst, 2021, Advance Article
Article type
Minireview

Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges

K. Singh, R. Nalabotala, K. M. Koo, S. Bose, R. Nayak and M. J. A. Shiddiky, Analyst, 2021, Advance Article , DOI: 10.1039/D1AN00024A

Social activity

Search articles by author

Spotlight

Advertisements