Jump to main content
Jump to site search

Issue 6, 2021
Previous Article Next Article

Native mass spectrometry for the design and selection of protein bioreceptors for perfluorinated compounds

Author affiliations

Abstract

Biosensing platforms are answering the increasing demand for analytical tools for environmental monitoring of small molecules, such as per- and polyfluoroalkyl substances (PFAS). By transferring toxicological findings in bioreceptor design we can develop innovative pathways for biosensor design. Indeed, toxicological studies provide fundamental information about PFAS-biomolecule complexes that can help evaluate the applicability of the latter as bioreceptors. The toolbox of native mass spectrometry (MS) can support this evaluation, as shown by the two case studies reported in this work. The analysis of model proteins’ (i.e. albumin, haemoglobin, cytochrome c and neuroglobin) interactions with well-known PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), demonstrated the potential of this native MS screening approach. In the first case study, untreated albumin and delipidated albumin were compared in the presence and absence of PFOA confirming that the delipidation step increases albumin affinity for PFOA without affecting protein stability. In the second case study, the applicability of our methodology to identify potential bioreceptors for PFOS/PFOA was extended to other proteins. Structurally related haemoglobin and neuroglobin revealed a 1 : 1 complex, whereas no binding was observed for cytochrome c. These studies have value as a proof-of-concept for a general application of native MS to identify bioreceptors for toxic compounds.

Graphical abstract: Native mass spectrometry for the design and selection of protein bioreceptors for perfluorinated compounds

Back to tab navigation

Supplementary files

Article information


Submitted
10 Oct 2020
Accepted
17 Jan 2021
First published
18 Jan 2021

Analyst, 2021,146, 2065-2073
Article type
Paper

Native mass spectrometry for the design and selection of protein bioreceptors for perfluorinated compounds

E. Daems, G. Moro, H. Berghmans, L. M. Moretto, S. Dewilde, A. Angelini, F. Sobott and K. De Wael, Analyst, 2021, 146, 2065
DOI: 10.1039/D0AN02005B

Social activity

Search articles by author

Spotlight

Advertisements