Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Luminescent solar concentrators (LSCs) are large-scale sunlight collectors, consisting of fluorophores embedded in waveguides, which can concentrate part of the absorbed sunlight at the borders of the slab through wave-guided photoluminescence. Benefiting from their low-cost and semi-transparency, they exhibit great potential for building integrated photovoltaics. Among various types of fluorophores, carbon quantum dots (C-dots) have attracted great interest due to their relatively high quantum yield (QY), low-cost, non-toxic composition and simple synthetic methods. Unfortunately, most red-emitting C-dots with high QYs were synthesized using relatively toxic and expensive precursors. The C-dots exhibiting red-emission synthesized using sustainable precursors (e.g. citric acid) have QYs less than 20%. Here we synthesized the red-emitting C-dots produced by using citric acid and urea as precursors and N,N-diethylformamide as the solvent via a solvothermal reaction. The red C-dots have a broad absorption from 300–650 nm, with a QY as high as 40% in ethanol. In addition, the C-dots exhibited good biocompatibility, even for a C-dot concentration up to 1000 μg mL−1. The LSC (LSC area 100 cm2) based on red C-dots exhibited a solar-to-electricity power conversion efficiency (PCE) of 1.9% under natural sunlight illumination (35 mW cm−2). We combined red-emitting C-dots with green-emitting C-dots prepared via a vacuum heating approach. By using a tandem structure, composed of two slabs each incorporating a different C-dot type, the obtained PCE of the LSC based on the combination of red and green C-dots further increases up to 2.3% (under the same irradiance equal to 35 mW cm−2), which is comparable to the reported PCEs for the LSCs based on C-dots or other types of fluorophores. This work indicates that the red-emitting C-dots produced by low-cost and environmentally-friendly precursors exhibit great potential as building blocks for the environmentally compatible LSCs.

Graphical abstract: Red and green-emitting biocompatible carbon quantum dots for efficient tandem luminescent solar concentrators

Page: ^ Top