Jump to main content
Jump to site search

Issue 5, 2021
Previous Article Next Article

Epitaxial growth of perovskite oxide films facilitated by oxygen vacancies

Author affiliations

Abstract

Single-crystal epitaxial films of technologically important and scientifically intriguing multifunctional ABO3 perovskite-type metal oxides are essential for advanced applications and understanding of these materials. In such films, a film-substrate misfit strain enables unprecedented crystal phases and unique properties that are not available in their bulk counterparts. However, the prerequisite growth of strained epitaxial films is fundamentally restricted by misfit relaxation. Here we demonstrate that introduction of a small oxygen deficiency concurrently stabilizes epitaxy and increases lattice strain in thin films of archetypal perovskite oxide SrTiO3. By combining experimental and theoretical methods, we found that lattice distortions around oxygen vacancies lead to anisotropic local stresses, which interact with the misfit strain in epitaxial films. Consequently, specific crystallographic alignments of the stresses are energetically favorable and can facilitate epitaxial growth of strained films. Because anisotropic oxygen-vacancy stresses are inherent to perovskite-type and many other oxides, we anticipate that the disclosed phenomenon of epitaxial stabilization by oxygen vacancies is relevant for a very broad range of functional oxides.

Graphical abstract: Epitaxial growth of perovskite oxide films facilitated by oxygen vacancies

Back to tab navigation

Supplementary files

Article information


Submitted
07 Dec 2020
Accepted
28 Dec 2020
First published
30 Dec 2020

This article is Open Access

J. Mater. Chem. C, 2021,9, 1693-1700
Article type
Paper

Epitaxial growth of perovskite oxide films facilitated by oxygen vacancies

M. Tyunina, L. L. Rusevich, E. A. Kotomin, O. Pacherova, T. Kocourek and A. Dejneka, J. Mater. Chem. C, 2021, 9, 1693
DOI: 10.1039/D0TC05750A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements