Jump to main content
Jump to site search


Strontium–calcium phosphate hybrid cement with enhanced osteogenic and angiogenic properties for vascularised bone regeneration

Author affiliations

Abstract

Vascularized bone tissue engineering is regarded as one of the optimal treatment options for large bone defects. The lack of angiogenic properties and unsatisfactory physicochemical performance restricts calcium phosphate cement (CPC) from application in vascularized bone tissue engineering. Our previous studies have developed a starch and BaSO4 incorporated calcium phosphate hybrid cement (CPHC) with improved mechanical strength and handling properties. However, the bioactivity—especially the angiogenic ability—is still absent and requires further improvement. Herein, based on the reported CPHC and the osteogenic and angiogenic properties of strontium (Sr) ions, a strontium-enhanced calcium phosphate hybrid cement (Sr–CPHC) was developed to improve both biological and physicochemical properties of CPC. Compared to CPC, the initial setting time of Sr–CPHC was prolonged from 2.2 min to 20.7 min. The compressive strength of Sr–CPHC improved from 11.21 MPa to 45.52 MPa compared with CPC as well. Sr–CPHC was biocompatible and showed promotion of alkaline phosphatase (ALP) activity, calcium nodule formation and osteogenic relative gene expression, suggesting high osteogenic-inductivity. Sr–CPHC also facilitated the migration and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro and up-regulated the expression of the vascular endothelial growth factor (VEGF) and Angiopoietin-1 (Ang-1). In vivo evaluation showed marked new bone formation in a rat calvarial defect model with Sr-CPHC implanted. Sr–CPHC also exhibited enhancement of neovascularization in subcutaneous connective tissue in a rat subcutaneous implantation model. Thus, the Sr–CPHC with the dual effects of osteogenesis and angiogenesis shows great potential for clinical applications such as the repair of ischemic osteonecrosis and critical-size bone defects.

Graphical abstract: Strontium–calcium phosphate hybrid cement with enhanced osteogenic and angiogenic properties for vascularised bone regeneration

Supplementary files

Article information


Submitted
02 Mar 2021
Accepted
23 May 2021
First published
25 May 2021

J. Mater. Chem. B, 2021, Advance Article
Article type
Paper

Strontium–calcium phosphate hybrid cement with enhanced osteogenic and angiogenic properties for vascularised bone regeneration

X. Wu, Z. Tang, K. Wu, Y. Bai, X. Lin, H. Yang, Q. Yang, Z. Wang, X. Ni, H. Liu and L. Yang, J. Mater. Chem. B, 2021, Advance Article , DOI: 10.1039/D1TB00439E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements