Issue 7, 2021

Photocatalytic syngas production using conjugated organic polymers

Abstract

A range of linear conjugated polymers is reported that promote photocatalytic CO2 reduction in water with a sacrificial hole-scavenger. Two photocatalysts containing dibenzo[b,d]thiophene sulfone were found to be the most active materials. A dibenzo[b,d]thiophene sulfone co-polymer with phenylene (P7) had the highest rate for producing CO, but also for the co-evolution of H2. The homopolymer of dibenzo[b,d]thiophene sulfone was found to be less active for CO production, but had a higher H2 production rate, which is explained by changes in the driving-force favouring proton reduction. The co-evolution of hydrogen is facilitated by residual palladium from the material synthesis. By varying the amount of palladium in the photocatalyst, syngas can be obtained with varying ratios of H2 to CO.

Graphical abstract: Photocatalytic syngas production using conjugated organic polymers

Supplementary files

Article information

Article type
Paper
Submitted
30 Sep 2020
Accepted
17 Jan 2021
First published
18 Jan 2021
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2021,9, 4291-4296

Photocatalytic syngas production using conjugated organic polymers

Z. Fu, A. Vogel, M. A. Zwijnenburg, A. I. Cooper and R. S. Sprick, J. Mater. Chem. A, 2021, 9, 4291 DOI: 10.1039/D0TA09613J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements