Jump to main content
Jump to site search

Issue 2, 2021
Previous Article Next Article

Reduced grey brookite for noble metal free photocatalytic H2 evolution

Author affiliations

Abstract

Herein we introduce for the first time a reduced “grey” brookite TiO2 photocatalyst, produced by thermal hydrogenation of brookite nanoparticles, that shows a remarkable noble metal free photocatalytic H2 evolution. Its activity is substantially higher than that of other TiO2 polymorphs, i.e. anatase or rutile, comparably sized and activated by hydrogenation under optimized conditions. Along with brookite powders, an oriented brookite single crystal was investigated as a defined surface to confirm the effects of the hydrogenation treatment. By a combination of electron paramagnetic resonance (EPR), electron and X-ray characterization techniques applied to the powders and single crystal, we find that hydrogenation forms in brookite a defective crystalline surface layer rich in Ti3+ states. Amorphization effects, i.e. forming the so called “amorphous shell” as reported in previous work for black anatase TiO2, were not detected. Overall, we provide experimental evidence that hydrogenation forms in brookite a surface strained zone with point defects that are mediators for electron transfer to H2O, leading to a significantly enhanced noble metal free photocatalytic H2 evolution in comparison to anatase.

Graphical abstract: Reduced grey brookite for noble metal free photocatalytic H2 evolution

Back to tab navigation

Supplementary files

Article information


Submitted
15 Sep 2020
Accepted
03 Dec 2020
First published
10 Dec 2020

J. Mater. Chem. A, 2021,9, 1168-1179
Article type
Paper

Reduced grey brookite for noble metal free photocatalytic H2 evolution

E. Wierzbicka, M. Altomare, M. Wu, N. Liu, T. Yokosawa, D. Fehn, S. Qin, K. Meyer, T. Unruh, E. Spiecker, L. Palmisano, M. Bellardita, J. Will and P. Schmuki, J. Mater. Chem. A, 2021, 9, 1168 DOI: 10.1039/D0TA09066B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements