Issue 18, 2021

A comparative study of blood rheology across species

Abstract

Recent advances in hemorheology are extended to study blood rheology across species, which has important clinical implications particularly in intravenous drug scaleup as drugs undergoing clinical trials are first tested in animals. Some of the first hemorheological measurements from seven different species under both steady and transient shear conditions are presented and modeled using a rheological model developed and validated on human blood rheology fit to 20 different donors. Despite similar physiological properties across the blood samples from different species, significant differences are observed, particularly at low shear rates. Blood from species that form rouleaux exhibit a yield-like behavior and enhanced viscoelasticity at low shear rates, while blood from species without rouleaux exhibit nearly Newtonian behavior at similar shear rates. Viscoelasticity due to blood cell deformation is evident for all species at high shear rates. Novel, unidirectional large amplitude oscillatory shear measurements differentiate species. Using the newly acquired data in combination with previous literature data, a new allometric scaling relation is suggested for the low-shear blood viscosity for various mammalian evolutionary orders. Using an established model for arterial branching across species, it is conjectured that the observed hemorheological scaling across species is driven by maintaining a constant wall shear stress in arterial vessels.

Graphical abstract: A comparative study of blood rheology across species

Supplementary files

Article information

Article type
Paper
Submitted
18 Feb 2021
Accepted
30 Mar 2021
First published
01 Apr 2021

Soft Matter, 2021,17, 4766-4774

Author version available

A comparative study of blood rheology across species

J. S. Horner, N. J. Wagner and A. N. Beris, Soft Matter, 2021, 17, 4766 DOI: 10.1039/D1SM00258A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements