Jump to main content
Jump to site search

Issue 13, 2021, Issue in Progress
Previous Article Next Article

The activation efficiency of mechanophores can be modulated by adjacent polymer composition

Author affiliations

Abstract

The activation efficiency of mechanophores in stress-responsive polymers is generally limited by the competing process of unspecific scission in other parts of the polymer chain. Here it is shown that the linker between the mechanophore and the polymer backbone determines the force required to activate the mechanophore. Using quantum chemical methods, it is demonstrated that the activation forces of three mechanophores (Dewar benzene, benzocyclobutene and gem-dichlorocyclopropane) can be adjusted over a range of almost 300% by modifying the chemical composition of the linker. The results are discussed in terms of changes in electron density, strain distribution and structural parameters during the rupture process. Using these findings it is straightforward to either significantly enhance or reduce the activation rate of mechanophores in stress-responsive materials, depending on the desired use case. The methodology is applied to switch a one-step “gating” of a mechanochemical transformation to a two-step process.

Graphical abstract: The activation efficiency of mechanophores can be modulated by adjacent polymer composition

Back to tab navigation

Supplementary files

Article information


Submitted
19 Nov 2020
Accepted
05 Feb 2021
First published
12 Feb 2021

This article is Open Access

RSC Adv., 2021,11, 7391-7396
Article type
Paper

The activation efficiency of mechanophores can be modulated by adjacent polymer composition

S. Kumar and T. Stauch, RSC Adv., 2021, 11, 7391
DOI: 10.1039/D0RA09834E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements