Jump to main content
Jump to site search

Issue 7, 2021, Issue in Progress
Previous Article Next Article

Enabling scale-up of mesoporous silicon for lithium-ion batteries: a systematic study of a thermal moderator

Author affiliations

Abstract

The volume expansion of silicon during cycling of a lithium-ion battery (LIB) leads to degradation and capacity loss. Porous silicon can address many of the issues faced by silicon active materials and has previously been shown to have excellent cyclability. Recently we have uncovered the mechanisms underpinning the pore evolution in magnesiothermic reduction (MgTR) of silica and further demonstrated that it has the potential to produce porous silicon in a scalable and economic manner [J. Mater. Chem. A, 2020, 8, 4938]. However, the scalability of MgTR is affected by the large excess heat produced during reaction. Although previous studies have shown that NaCl can be used as a thermal moderator to mitigate this issue, this has not been systematically investigated, leading to a lack of knowledge on scalability of MgTR. Here, by carefully investigating the roles of NaCl, we show that the NaCl ratio and reduction temperature are the critical factors for controlling scale-up and the product properties. We identified the upper temperature limit of NaCl as a thermal moderator. Further, we systematically showed how the amount of NaCl and the reduction temperature affect the porous properties of the product silicon. Our results have established pathways for scaling-up this method such that it can now be taken forward to target specific porous silicon properties.

Graphical abstract: Enabling scale-up of mesoporous silicon for lithium-ion batteries: a systematic study of a thermal moderator

Back to tab navigation

Article information


Submitted
22 Oct 2020
Accepted
12 Jan 2021
First published
19 Jan 2021

This article is Open Access

RSC Adv., 2021,11, 3801-3807
Article type
Paper

Enabling scale-up of mesoporous silicon for lithium-ion batteries: a systematic study of a thermal moderator

J. E. Entwistle and S. V. Patwardhan, RSC Adv., 2021, 11, 3801
DOI: 10.1039/D0RA09000J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements