Issue 46, 2021

Chemical catalyst-promoted photooxygenation of amyloid proteins

Abstract

Misfolded proteins produce aberrant fibrillar aggregates, called amyloids, which contain cross-β-sheet higher order structures. The species generated in the aggregation process (i.e., oligomers, protofibrils, and fibrils) are cytotoxic and can cause various diseases. Interfering with the amyloid formation of proteins could be a drug development target for treating diseases caused by aberrant protein aggregation. In this review, we introduce a variety of chemical catalysts that oxygenate amyloid proteins under light irradiation using molecular oxygen as the oxygen atom donor (i.e., photooxygenation catalysts). Catalytic photooxygenation strongly inhibits the aggregation of amyloid proteins due to covalent installation of hydrophilic oxygen atoms and attenuates the neurotoxicity of the amyloid proteins. Recent in vivo studies in disease model animals using photooxygenation catalysts showed promising therapeutic effects, such as memory improvement and lifespan extension. Moreover, photooxygenation catalysts with new modes of action, including interference with the propagation of amyloid core seeds and enhancement in the metabolic clearance of amyloids in the brain, have begun to be identified. Manipulation of catalytic photooxygenation with secured amyloid selectivity is indispensable for minimizing the side effects in clinical application. Here we describe several strategies for designing catalysts that selectively photooxygenate amyloids without reacting with other non-amyloid biomolecules.

Graphical abstract: Chemical catalyst-promoted photooxygenation of amyloid proteins

Article information

Article type
Review Article
Submitted
26 Aug 2021
Accepted
26 Oct 2021
First published
27 Oct 2021

Org. Biomol. Chem., 2021,19, 10017-10029

Chemical catalyst-promoted photooxygenation of amyloid proteins

Y. Sohma, T. Sawazaki and M. Kanai, Org. Biomol. Chem., 2021, 19, 10017 DOI: 10.1039/D1OB01677F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements