Issue 5, 2021

Design of cross-linked polyisobutylene matrix for efficient encapsulation of quantum dots

Abstract

Photoluminescent quantum dots (QDs) are a prominent example of nanomaterials used in practical applications, especially in light-emitting and light-converting devices. Most of the current applications of QDs require formation of thin films or their incorporation in solid matrices. The choice of an appropriate host material capable of preventing QDs from degradation and developing a process of uniform incorporation of QDs in the matrix have become essential scientific and technological challenges. In this work, we developed a method of uniform incorporation of Cu–Zn–In–S (CZIS) QDs into a highly protective cross-linked polyisobutylene (PIB) matrix with high chemical resistance and low gas permeability. Our approach involves the synthesis of a methacrylate-terminated three-arm star-shaped PIB oligomeric precursor capable of quick formation of a robust 3D polymer network upon exposure to UV-light, as well as the design of a special ligand introducing short PIB chains onto the surface of the QDs, thus providing compatibility with the matrix. The obtained cross-linked QDs-in-polymer composites underwent a complex photostability test in air and under vacuum as well as a chemical stability test. These tests found that CZIS QDs in a cross-linked PIB matrix demonstrated excellent photo- and chemical stability when compared to identical QDs in widely used polyacrylate-based matrices. These results make the composites developed excellent materials for the fabrication of robust, stable and durable transparent light conversion layers.

Graphical abstract: Design of cross-linked polyisobutylene matrix for efficient encapsulation of quantum dots

Supplementary files

Article information

Article type
Paper
Submitted
02 Dec 2020
Accepted
19 Jan 2021
First published
20 Jan 2021
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2021,3, 1443-1454

Design of cross-linked polyisobutylene matrix for efficient encapsulation of quantum dots

A. Prudnikau, D. I. Shiman, E. Ksendzov, J. Harwell, E. A. Bolotina, P. A. Nikishau, S. V. Kostjuk, I. D. W. Samuel and V. Lesnyak, Nanoscale Adv., 2021, 3, 1443 DOI: 10.1039/D0NA01012J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements