Jump to main content
Jump to site search

Issue 4, 2021
Previous Article Next Article

The energy landscape governs ductility in disordered materials

Author affiliations

Abstract

Based on their structure, non-crystalline phases can fail in a brittle or ductile fashion. However, the nature of the link between structure and propensity for ductility in disordered materials has remained elusive. Here, based on molecular dynamics simulations of colloidal gels and silica glasses, we investigate how the degree of structural disorder affects the fracture of disordered materials. As expected, we observe that structural disorder results in an increase in ductility. By applying the activation-relaxation technique (an open-ended saddle point search algorithm), we demonstrate that the propensity for ductility is controlled by the topography of the energy landscape. Interestingly, we observe a power-law relationship between the particle non-affine displacement upon fracture and the average local energy barrier. This reveals that the dynamics of the particles upon fracture is encoded in the static energy landscape, i.e., before any load is applied. This relationship is shown to apply to several classes of non-crystalline materials (oxide and metallic glasses, amorphous solid, and colloidal gels), which suggests that it may be a generic feature of disordered materials.

Graphical abstract: The energy landscape governs ductility in disordered materials

Back to tab navigation

Supplementary files

Article information


Submitted
15 Jun 2020
Accepted
01 Feb 2021
First published
01 Feb 2021

Mater. Horiz., 2021,8, 1242-1252
Article type
Communication

The energy landscape governs ductility in disordered materials

L. Tang, H. Liu, G. Ma, T. Du, N. Mousseau, W. Zhou and M. Bauchy, Mater. Horiz., 2021, 8, 1242
DOI: 10.1039/D0MH00980F

Social activity

Search articles by author

Spotlight

Advertisements