Issue 20, 2021

De novo biosynthesis and whole-cell catalytic production of paracetamol on a gram scale in Escherichia coli

Abstract

The synthetic drug paracetamol is one of the most commonly used analgesic, antipyretic agents around the world. Global massive demand promoted its synthesis in large quantities. Chemical synthesis is the main approach for paracetamol production. However, the reaction process contributes toward environmental pollution, and the reaction conditions are harsh. Herein, we reported the construction of the paracetamol de novo biosynthetic pathway in Escherichia coli. Five enzymes from different microbial sources were heterologously expressed into E. coli to construct the APAP (1) producing strain PA1. Through protein engineering of ABH (4-aminobenzoate hydroxylase) and PANAT (arylamine N-acetyltransferase), enhancement of the host cell resistance to the substrate or final product, and utilizing synthetic protein scaffolds to optimize the metabolic flux, the engineered strain could produce 942.5 mg L−1 (6.24 mM) paracetamol in a fed-batch 5 L fermenter directly from glucose or glycerol, which circumvents the fossil fuel resource use. Moreover, we established a whole-cell cascade biocatalytic synthesis way to paracetamol and analogues. Using p-aminobenzoate as the substrate, 4.2 g L−1 (27.7 mM) paracetamol can be formed after 9 h (95% conversion rate). After metabolic engineering, enzyme molecular modification, and other optimizations, we created the biotransformation strategy to manufacture paracetamol on a gram scale. This study provides a promising green and efficient alternative to the traditional chemical manufacturing method.

Graphical abstract: De novo biosynthesis and whole-cell catalytic production of paracetamol on a gram scale in Escherichia coli

Supplementary files

Article information

Article type
Paper
Submitted
20 Jul 2021
Accepted
22 Sep 2021
First published
22 Sep 2021

Green Chem., 2021,23, 8280-8289

De novo biosynthesis and whole-cell catalytic production of paracetamol on a gram scale in Escherichia coli

F. Hou, M. Xian and W. Huang, Green Chem., 2021, 23, 8280 DOI: 10.1039/D1GC02591K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements