Issue 11, 2021

Comment on “Tremendously enhanced photocurrent enabled by triplet–triplet annihilation up-conversion for high-performance perovskite solar cells” by W. Sheng, J. Yang, X. Li, G. Liu, Z. Lin, J. Long, S. Xiao, L. Tan and Y. Chen, Energy Environ. Sci., 2021, 14, 3532

Abstract

Sheng et al. (2021) report an increase in the power conversion efficiency of a methylammonium lead iodide perovskite solar cell, which they have attributed to the benefits of in situ perovskite-sensitized upconversion by triplet–triplet annihilation in the organic semiconductor rubrene. In the following, we will discuss why in the device structure presented here upconversion inherently cannot be the underlying cause of the observed effects. Rather, the process of upconversion can fundamentally only lead to a reduction of the device efficiency if the same material is used as the active layer in the photovoltaic devices and as the triplet sensitizer. Therefore, the improved photovoltaic performance must have a different root cause. We follow up with an alternative interpretation for the performance increase observed by the authors.

Associated articles

Article information

Article type
Comment
Submitted
13 May 2021
Accepted
16 Sep 2021
First published
14 Oct 2021

Energy Environ. Sci., 2021,14, 6050-6052

Comment on “Tremendously enhanced photocurrent enabled by triplet–triplet annihilation up-conversion for high-performance perovskite solar cells” by W. Sheng, J. Yang, X. Li, G. Liu, Z. Lin, J. Long, S. Xiao, L. Tan and Y. Chen, Energy Environ. Sci., 2021, 14, 3532

L. Nienhaus and T. W. Schmidt, Energy Environ. Sci., 2021, 14, 6050 DOI: 10.1039/D1EE01446C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements