Issue 8, 2021

Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere

Abstract

All-polymer solar cells (all-PSCs) exhibiting superior device stability and mechanical robustness have attracted considerable interest. Emerging polymerized small-molecule acceptors (PSMAs) have promoted the progress of all-PSCs exceeding a power conversion efficiency (PCE) of 14%. However, most of the all-PSCs are processed with halogenated solvents that are hazardous towards humans and the environment. Herein, halogen-free processing solvents of CS2, 1,2,4-TMB and o-XY are utilized for producing eco-friendly and highly efficient all-PSCs. In particular, o-XY solvent-processed all-PSCs achieve a high PCE of 15.6%, which is among the highest values in green-solvent-processed all-PSCs to date. Detailed investigations reveal that such enhancement is mainly attributed to the optimal blend morphology and polymer crystalline structures, which is resulted from aggregated structures of polymers formed in o-XY. Importantly, o-XY-processed-all-PSCs are successfully fabricated in ambient conditions, affording a high PCE approaching 15.0%. This work highlights the importance of green solvent strategy in controlling the polymer aggregated structures and blend film morphology of all-PSCs, paving the way towards high-performance and eco-friendly all-PSCs for practical applications.

Graphical abstract: Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere

Supplementary files

Article information

Article type
Paper
Submitted
30 Apr 2021
Accepted
08 Jun 2021
First published
08 Jun 2021

Energy Environ. Sci., 2021,14, 4499-4507

Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere

B. Liu, H. Sun, J. Lee, J. Yang, J. Wang, Y. Li, B. Li, M. Xu, Q. Liao, W. Zhang, D. Han, L. Niu, H. Meng, B. J. Kim and X. Guo, Energy Environ. Sci., 2021, 14, 4499 DOI: 10.1039/D1EE01310F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements