Jump to main content
Jump to site search


Re-examining rates of lithium-ion battery technology improvement and cost decline

Author affiliations

Abstract

Lithium-ion technologies are increasingly employed to electrify transportation and provide stationary energy storage for electrical grids, and as such their development has garnered much attention. However, their deployment is still relatively limited, and their broader adoption will depend on their potential for cost reduction and performance improvement. Understanding this potential can inform critical climate change mitigation strategies, including public policies and technology development efforts. However, many existing estimates of past cost decline, which often serve as starting points for forecasting models, rely on limited data series and measures of technological progress. Here we systematically collect, harmonize, and combine various data series of price, market size, research and development, and performance of lithium-ion technologies. We then develop representative series for these measures, while separating cylindrical cells from all types of cells. For both, we find that the real price of lithium-ion cells, scaled by their energy capacity, has declined by about 97% since their commercial introduction in 1991. We estimate that between 1992 and 2016, real price per energy capacity declined 13% per year for both all types of cells and cylindrical cells, and upon a doubling of cumulative market size, decreased 20% for all types of cells and 24% for cylindrical cells. We also consider additional performance characteristics including energy density and specific energy. When energy density is incorporated into the definition of service provided by a lithium-ion battery, estimated technological improvement rates increase considerably. The annual decline in real price per service increases from 13 to 17% for both all types of cells and cylindrical cells while learning rates increase from 20 to 27% for all cell shapes and 24 to 31% for cylindrical cells. These increases suggest that previously reported improvement rates might underestimate the rate of lithium-ion technologies' change. Moreover, our improvement rate estimates suggest the degree to which lithium-ion technologies' price decline might have been limited by performance requirements other than cost per energy capacity. These rates also suggest that battery technologies developed for stationary applications, where restrictions on volume and mass are relaxed, might achieve faster cost declines, though engineering-based mechanistic cost modeling is required to further characterize this potential. The methods employed to collect these data and estimate improvement rates are designed to serve as a blueprint for how to work with sparse data when making consequential measurements of technological change.

Graphical abstract: Re-examining rates of lithium-ion battery technology improvement and cost decline

Back to tab navigation

Supplementary files

Article information


Submitted
19 Aug 2020
Accepted
07 Dec 2020
First published
23 Mar 2021

This article is Open Access

Energy Environ. Sci., 2021, Advance Article
Article type
Analysis

Re-examining rates of lithium-ion battery technology improvement and cost decline

M. S. Ziegler and J. E. Trancik, Energy Environ. Sci., 2021, Advance Article , DOI: 10.1039/D0EE02681F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements