Issue 34, 2021

Intense multi-colored luminescence in a series of rare-earth metal–organic frameworks with aliphatic linkers

Abstract

Two series of highly luminescent yttrium(III), europium(III) and terbium(III) metal–organic frameworks containing diimine aromatic ligands and the dicarboxylate linker trans-1,4-cyclohexanedicarboxylate (chdc2−) which can be described by the general formulas [M2(bpy)2(chdc)3], where M = Y3+ (1), Eu3+ (2), and Tb3+ (3) and bpy = 2,2′-bipyridyl, and [M2(phen)2(chdc)3], where M = Y3+ (4), Eu3+ (5), and Tb3+ (6) and phen = 1,10-phenanthroline, were synthesized and characterized. All compounds are based on the same dinuclear {M2(L)2(OOCR)6} building blocks and possess a similar topology of the 3D framework with narrow pores. The chelate aromatic ligands act as efficient light-harvesting antennas for subsequent energy transfer to the emitting metal center (M = Eu3+, Tb3+) or intraligand photoemission (M = Y3+). As a result, the reported compounds display intense emission in the red (Eu3+), green (Tb3+) or blue (Y3+) regions representing three basic colors (RGB) of visible light. The measured quantum yields (QYs) of the solid-state luminescence for individual compounds were found to be 63% (1), 46% (2), 59% (3), 2.3% (4), 55% (5) and 49% (6). The drastic reduction of the luminescence efficiency for 4 is explained by the strong disorder of phen ligands. The high thermal stability (up to 300 °C) and exceptional moisture resistance of the bpy-based frameworks 1–3 were confirmed by TG and PXRD measurements. Various bimetal or trimetal compositions were also prepared for the bpy-series. The luminescence properties of these mixed-metal compounds depend on both the chemical composition and excitation wavelength (λex). Remarkably, pure white emission with color temperature = 6126 K was achieved for [Y1.68Eu0.08Tb0.24(bpy)2(chdc)3] at λex = 360 nm with QY = 20%. The reported results suggest that the obtained coordination framework series is a convenient platform for the design of highly efficient light emitting materials with tunable properties.

Graphical abstract: Intense multi-colored luminescence in a series of rare-earth metal–organic frameworks with aliphatic linkers

Supplementary files

Article information

Article type
Paper
Submitted
17 Mar 2021
Accepted
21 Jul 2021
First published
10 Aug 2021

Dalton Trans., 2021,50, 11899-11908

Intense multi-colored luminescence in a series of rare-earth metal–organic frameworks with aliphatic linkers

P. A. Demakov, A. A. Ryadun, P. V. Dorovatovskii, V. A. Lazarenko, D. G. Samsonenko, K. A. Brylev, V. P. Fedin and D. N. Dybtsev, Dalton Trans., 2021, 50, 11899 DOI: 10.1039/D1DT00872B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements