Jump to main content
Jump to site search

Issue 45, 2020
Previous Article Next Article

Universal polymeric bipolar hosts for highly efficient solution-processable blue and green thermally activated delayed fluorescence OLEDs

Author affiliations

Abstract

In this study, two polymeric host materials, P(NmCP) and P(mCP), were synthesized, and high-performing sky-blue and green thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs) were achieved. The simple structure polymer host was designed by inserting a pyridine group into the core of P(NmCP) and an electron-donating phenyl group into the core of P(mCP). The two polymeric hosts exhibited high triplet energies (T1 = 3.04 eV for P(NmCP) and 3.05 eV for P(mCP)), which were sufficiently high to realize blue and green TADF-OLEDs. In brief, solution-processed OLEDs with an emissive layer bearing P(NmCP) as a bipolar electron host exhibited remarkable performance with a maximum current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE) of 70.36 cd A−1, 63.15 lm W−1, and 20.07%, respectively, in the green-emitting device. In the blue-emitting device, we obtained a maximum CE, PE, and EQE of 27.13 cd A−1, 22.30 lm W−1, and 10.70%, respectively. The polymer design with such a high T1 value is believed to be the cornerstone for implementing high-performance TADF-OLEDs via solution processing in the future.

Graphical abstract: Universal polymeric bipolar hosts for highly efficient solution-processable blue and green thermally activated delayed fluorescence OLEDs

Back to tab navigation

Supplementary files

Article information


Submitted
13 Sep 2020
Accepted
19 Oct 2020
First published
20 Oct 2020

J. Mater. Chem. C, 2020,8, 16048-16056
Article type
Paper

Universal polymeric bipolar hosts for highly efficient solution-processable blue and green thermally activated delayed fluorescence OLEDs

J. Hwang, C. Y. Kim, H. Kang, J. Jeong, H. Y. Woo, M. J. Cho, S. Park and D. H. Choi, J. Mater. Chem. C, 2020, 8, 16048
DOI: 10.1039/D0TC04366D

Social activity

Search articles by author

Spotlight

Advertisements