Jump to main content
Jump to site search

Issue 40, 2020
Previous Article Next Article

Broadband emission in all-inorganic metal halide perovskites with intrinsic vacancies

Author affiliations

Abstract

Efficient broadband emission related to self-trapped excitons (STEs) in low-dimensional perovskites and double perovskite crystals has attracted great attention due to its potential applications in optoelectronics. However, the formation of STEs in three-dimensional (3D) all-inorganic perovskites (CsPbX3) is difficult. Here, through the doping of ytterbium (Yb3+) or erbium (Er3+) ions into CsPbX3 crystals, we observed broadband luminescence from STEs with a linewidth exceeding 200 nm and a Stokes shift of ∼1 eV. Theoretical concepts and experimental studies demonstrated that Pb2+ in perovskites could be replaced by impure ions. Also, the Pb2+ substitution defects and adjacent halide vacancies introduced defect states lying just below the conduction band minimum of perovskites. Strong electron–phonon coupling between trapped carriers and deformation of the [PbX6] cage reduced the energy gap of perovskites. Our study sheds new light on the permanent defects induced in extrinsic STEs in 3D inorganic perovskites. It also provides a clear microscopic picture of the underlying mechanism of formation of STEs.

Graphical abstract: Broadband emission in all-inorganic metal halide perovskites with intrinsic vacancies

Back to tab navigation

Supplementary files

Article information


Submitted
29 Aug 2020
Accepted
22 Sep 2020
First published
24 Sep 2020

J. Mater. Chem. C, 2020,8, 13976-13981
Article type
Communication

Broadband emission in all-inorganic metal halide perovskites with intrinsic vacancies

F. Jiang, X. Jiang, W. Zheng, Y. Ouyang, Y. Zhang, L. Li, P. Fan, H. Zhao, Y. Li, Y. Jiang, X. Zhu, X. Zhuang, Y. Feng and A. Pan, J. Mater. Chem. C, 2020, 8, 13976
DOI: 10.1039/D0TC04123H

Social activity

Search articles by author

Spotlight

Advertisements