Jump to main content
Jump to site search


A privileged ternary blend enabling non-fullerene organic photovoltaics with over 14% efficiency

Author affiliations

Abstract

Two non-fullerene small molecule acceptors (NF-SMAs) NT-4F and NT-4Cl with halogenated end groups were designed and synthesized. When blended with PM6, the NT-4Cl-based binary device gave a power conversion efficiency (PCE) of 11.44% with a fill factor (FF) of 74.1% while the NT-4F binary system showed a PCE of 9.46%. To further broaden the absorption profile and fine-tune the morphology, NCBDT-4Cl, an acceptor with a similar chemical structure and identical molecular orientation to NT-4Cl, was selected as a combinatory component to the PM6:NT-4Cl system. As a result, the ternary device achieved a dramatically promoted PCE of 14.55% with a synergistically enhanced FF of 77.1% and a Jsc of 20.99 mA cm−2 as well as a decreased energy loss (Eloss) of 0.51 eV, which represents the best performance for NT-based NF-SMAs to date.

Graphical abstract: A privileged ternary blend enabling non-fullerene organic photovoltaics with over 14% efficiency

Back to tab navigation

Supplementary files

Article information


Submitted
11 Jun 2020
Accepted
07 Jul 2020
First published
08 Jul 2020

J. Mater. Chem. C, 2020, Advance Article
Article type
Paper

A privileged ternary blend enabling non-fullerene organic photovoltaics with over 14% efficiency

J. Yan, Y. Yi, J. Zhang, H. Feng, Y. Ma, X. Wan, C. Li, Z. Wei and Y. Chen, J. Mater. Chem. C, 2020, Advance Article , DOI: 10.1039/D0TC02778B

Social activity

Search articles by author

Spotlight

Advertisements