Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Rational design and in-situ growth of SnO2/CMF composites: Insight understanding of fomaldehyde gas sensing mechanism and enhanced gas sensing properties

Abstract

ABSTRACT: In this study, melamine foam (MF) and tin dioxide composites were prepared by an in-situ growth and subsequent treatment under a mild hydrothermal environment. The morphology, structure and sensing properties of these composites were studied in detail. The results show that SnO2 nanoparticles can grow well on the carbonized melamine foam (CMF) skeleton through a facile hydrothermal reaction, and resulting in a stable three-dimensional (3D) porous hierarchical structure. The morphologies of these composites can be controlled accurately by adjusting the amount of SnCl2 precursor. It is found that the 3D hierarchical porous composite has better gas sensitivity and selectivity to HCHO gas than the pristine SnO2. The response of the optimized composite (the amount of the SnCl2 is 5.5 mmol) to 5 ppm HCHO gas can reach 30.0 with a LOD of below 1 ppm at an operating temperature 120°C. The detection of HCHO sensing products on the surface of the composite was studied by an in situ infrared spectroscopy. It revealed that intermediate product formic acid plays a key role in HCHO sensing. Meanwhile, CMF with unique hierarchical structure and good conductivity are responsible for enhanced gas sensing properties. In consideration of flexibility of melamine foam, the composite has a good potential in miniaturized and wearable HCHO sensor.

Back to tab navigation

Article information


Submitted
01 Apr 2020
Accepted
07 May 2020
First published
15 May 2020

J. Mater. Chem. C, 2020, Accepted Manuscript
Article type
Paper

Rational design and in-situ growth of SnO2/CMF composites: Insight understanding of fomaldehyde gas sensing mechanism and enhanced gas sensing properties

J. Xu, Z. Cheng, Y. Li, N. Luo, W. Zhang, Q. Hu, X. Wang and Y. Chen, J. Mater. Chem. C, 2020, Accepted Manuscript , DOI: 10.1039/D0TC01650K

Social activity

Search articles by author

Spotlight

Advertisements