Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



The In2SeS/g-C3N4 heterostructure: a new two-dimensional material for photocatalytic water splitting

Author affiliations

Abstract

In this work, the structural, electronic and optical properties of the In2SeS/g-C3N4 heterostructure are investigated to explore a highly efficient and spontaneous water splitting photocatalyst by first-principles calculations. The results show that the In2SeS/g-C3N4 heterostructure with a bandgap (Eg) of 2.03 eV is a typical type II semiconductor, which guarantees that the generated electrons and holes can be effectively separated. The potential of the conduction band minimum (CBM) and the valence band maximum (VBM) satisfies the requirements for photocatalytic water splitting. Meanwhile, the In2SeS/g-C3N4 heterostructure has a strong light-absorption ability, and mainly absorbs purple and blue light. In addition, the changes of Gibbs free energy (ΔG) are calculated to understand the oxygen evolution reaction (OER) process of water splitting. Under neutral conditions (pH = 7), the Gibbs free energy continuously decreases during the OER process, verifying the thermodynamic feasibility of water splitting through the In2SeS/g-C3N4 heterostructure. Hence, the In2SeS/g-C3N4 heterostructure is a kind of photocatalyst with excellent performance in the area of photocatalytic water splitting.

Graphical abstract: The In2SeS/g-C3N4 heterostructure: a new two-dimensional material for photocatalytic water splitting

Back to tab navigation

Supplementary files

Article information


Submitted
19 Feb 2020
Accepted
09 Apr 2020
First published
27 Apr 2020

J. Mater. Chem. C, 2020, Advance Article
Article type
Paper

The In2SeS/g-C3N4 heterostructure: a new two-dimensional material for photocatalytic water splitting

C. He, F. S. Han, J. H. Zhang and W. X. Zhang, J. Mater. Chem. C, 2020, Advance Article , DOI: 10.1039/D0TC00852D

Social activity

Search articles by author

Spotlight

Advertisements