Jump to main content
Jump to site search


Prediction of high carrier mobility for a novel two-dimensional semiconductor of BC6N: first principles calculations

Author affiliations

Abstract

First principles calculations are performed to predict phonon-limited carrier mobility for a novel graphene-like semiconductor with BC6N stoichiometry. First, the electron–phonon interaction matrix element (EPIME) from the standard Wannier and polar Wannier interpolation schemes is used to investigate mobility. After considering the polarization, carrier mobility is greatly reduced, so polar optical phonon (POP) scattering plays an important role. At 300 K, the electron mobility for the most stable BC6N–B is predicted to be μx = 4.51 × 102–8.37 × 102 and μy = 8.35 × 102–1.22 × 103 cm2 V−1 s−1, while the hole mobility is estimated to be μx = 4.79 × 102–8.65 × 102 and μy = 9.19 × 102–1.28 × 103 cm2 V−1 s−1. Then, the longitudinal acoustic phonon deformation potential theory (LAP-DPT) is adopted to calculate the mobility, which leads to an overestimation for carrier mobility in polar semiconductors. Furthermore, the semiempirical model based on the POP scattering is also used to investigate the mobility. It is confirmed that the intrinsic mobility for BC6N is mainly determined by the Fröhlich interaction. The investigation provides a deep understanding of carrier transport properties. It is revealed that B and N co-doped graphene may become a promising material for application in nanoelectronic devices due to the excellent mechanical behavior, moderate direct band gap and high carrier mobility.

Graphical abstract: Prediction of high carrier mobility for a novel two-dimensional semiconductor of BC6N: first principles calculations

Back to tab navigation

Article information


Submitted
01 Feb 2020
Accepted
11 Mar 2020
First published
13 Mar 2020

J. Mater. Chem. C, 2020, Advance Article
Article type
Paper

Prediction of high carrier mobility for a novel two-dimensional semiconductor of BC6N: first principles calculations

L. Shi, M. Yang, S. Cao, Q. You, Y. Zhang, M. Qi, K. Zhang and P. Qian, J. Mater. Chem. C, 2020, Advance Article , DOI: 10.1039/D0TC00549E

Social activity

Search articles by author

Spotlight

Advertisements