Jump to main content
Jump to site search

Issue 13, 2020
Previous Article Next Article

High-performance n- and p-type organic single-crystal field-effect transistors with an air-gap dielectric towards anti-ambipolar transport

Author affiliations

Abstract

The dielectric property has a significant effect on the performance of organic field-effect transistors (OFETs); therefore, a number of studies reported on dielectrics are focused on the development of high-performance OFETs. In this study, an air-gap dielectric was used to replace SiO2 as a low-defect insulating layer to improve the performance of OFETs. Based on the air-gap dielectric, a single-crystal ribbon of a thiophene-based quinoidal compound (TTT-CN) was first prepared, which exhibited a high electron mobility of 2.17 cm2 V−1 s−1 in air. In order to build p–n heterojunction devices, a p-type single-crystal transistor was developed, which showed a balanced mobility of 2.45 cm2 V−1 s−1, comparable to that of n-type transistors. Furthermore, the gate-tunable anti-ambipolar characteristics of FETs were demonstrated based on the p–n heterojunction obtained by combining the cross-overlapped n- and p-type single crystals with the air-gap dielectric. The reduction in the number of trap states on the air-gap layer resulted in a smaller hysteresis effect, and the value of ΔVpeak effectively reduced from 28.5 V to 6 V in anti-ambipolar transistors.

Graphical abstract: High-performance n- and p-type organic single-crystal field-effect transistors with an air-gap dielectric towards anti-ambipolar transport

Back to tab navigation

Supplementary files

Article information


Submitted
31 Jan 2020
Accepted
02 Mar 2020
First published
04 Mar 2020

J. Mater. Chem. C, 2020,8, 4303-4308
Article type
Communication

High-performance n- and p-type organic single-crystal field-effect transistors with an air-gap dielectric towards anti-ambipolar transport

J. Liu, J. Liu, J. Zhang, C. Li, Q. Cui, F. Teng, H. Li and L. Jiang, J. Mater. Chem. C, 2020, 8, 4303
DOI: 10.1039/D0TC00546K

Social activity

Search articles by author

Spotlight

Advertisements