Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Simultaneous realization of high-efficiency, low-drive voltage, and long lifetime TADF OLEDs by multifunctional hole-transporters

Author affiliations

Abstract

Although organic light emitting devices (OLEDs) based on thermally activated delayed fluorescence (TADF) have already achieved impressively high external quantum efficiency (ηext) of over 35%, their operation lifetime still needs to be improved for practical applications. In this study, we developed a molecular design for fabricating high triplet energy (ET = 2.7 eV) multifunctional hole-transport layers (HTLs) based on a hexaphenylbenzene skeleton to realize record-breaking efficient and stable TADF OLEDs. By using a dibenzofuran-end-capped HTL named 4DBFHPB, we could successfully develop a highly efficient, low-drive voltage, and stable green TADF OLED exhibiting an ηext of 19.2% and operation lifetime (LT50) of ∼24 000 h at an initial luminance of 1000 cd m−2. The drive voltage at 1000 cd m−2 was recorded to be 4.07 V. We also developed a sky-blue TADF OLED exhibiting an ηext of 21.5% and LT50 of ∼1700 h at an initial luminance of 500 cd m−2. The developed designs demonstrate record-breaking performances among the existing TADF OLEDs.

Graphical abstract: Simultaneous realization of high-efficiency, low-drive voltage, and long lifetime TADF OLEDs by multifunctional hole-transporters

Back to tab navigation

Supplementary files

Article information


Submitted
18 Jan 2020
Accepted
14 Apr 2020
First published
01 May 2020

J. Mater. Chem. C, 2020, Advance Article
Article type
Paper

Simultaneous realization of high-efficiency, low-drive voltage, and long lifetime TADF OLEDs by multifunctional hole-transporters

T. Kamata, H. Sasabe, N. Ito, Y. Sukegawa, A. Arai, T. Chiba, D. Yokoyama and J. Kido, J. Mater. Chem. C, 2020, Advance Article , DOI: 10.1039/D0TC00330A

Social activity

Search articles by author

Spotlight

Advertisements