Issue 14, 2020

First-principles calculations on CuInSe2/AlP heterostructures

Abstract

Heterostructures based on a CuInSe2 absorber with an AlP buffer have been modeled for the first time using different stacking schemes and interfacial terminations. Mechanical, electronic and topological properties of CuInSe2/AlP heterostructures along the [001] direction were investigated using the full potential linear augmented plane wave (FP-LAPW) method. Optimal interfacial distance, thermodynamic stability and band alignment have been computed systematically. A heterointerface with “on-top” stacking is thermodynamically the most stable compared with other stackings. The magnitudes of core level binding energy differences are in accordance with interfacial adhesion energies. Absolute deformation potentials (ADPs) of band energies as a function of (001) biaxial strain were determined. With redressing of ADPs, the revised valence and conduction band offsets have increased and decreased, respectively. AlP has strong resistance to biaxial strain in the evolution of band energy edges. Topological properties and density of states were used to investigate the relationship between interatomic interactions and energy band evolution. The most stable CuInSe2/AlP heterostructures have “spike-like” band offsets, with the one terminated as Se–Al characterized by a flat conduction band offset of 12 meV. This comes from the strong “Cu d-Se p” states hybridization. The theoretical maximum conversion efficiency of the AlP-based “absorber-buffer” heterostructure is 27.39% at 0.5 μm thickness.

Graphical abstract: First-principles calculations on CuInSe2/AlP heterostructures

Supplementary files

Article information

Article type
Paper
Submitted
09 Jan 2020
Accepted
25 Feb 2020
First published
25 Feb 2020

J. Mater. Chem. C, 2020,8, 4732-4742

First-principles calculations on CuInSe2/AlP heterostructures

P. Jiang, M. Record and P. Boulet, J. Mater. Chem. C, 2020, 8, 4732 DOI: 10.1039/D0TC00131G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements