Issue 16, 2020

Polymer and magnetic nanoparticle composites with tunable magneto-optical activity: role of nanoparticle dispersion for high verdet constant materials

Abstract

We report on a new strategy for preparing polymer–nanoparticle composite Faraday rotators for use in magnetic sensing and optical isolation. While most applications of Faraday rotators make use of inorganic garnet crystals, these are generally limited by low magneto-optical activity (low Verdet constants), high cost, and/or limited processing options. This has led to an interest in new materials with improved activity and processing characteristics. We have developed a new type of magneto-optical material based on polymer–nanoparticle composites that can be completely prepared by solution processing methods with tunable Verdet constants and device sensitivity. By exchanging native surface ligands on magneto-optically active CoFe2O4 nanocrystals with polymer compatible ligands, enhanced nanoparticle dispersion in processible polymer matrices was observed at up to 15 wt% inorganic loading. Employing a multilayer polymer film construct, functional Faraday rotator devices were prepared by simple sequential spin-coating of active nanocomposite and protective, barrier cellulose acetate layers. For these assemblies, magneto-optic activity and sensitivity are easily tuned through variation of nanoparticle feed and control of polymer film layers, respectively. These multilayered Faraday rotators show up to a 10-fold enhancement in Verdet constant compared to reference terbium gallium garnets at 1310 nm, opening new possibilities for the fabrication of “plastic garnets” as low cost alternatives to existing inorganic materials for use in the near-IR.

Graphical abstract: Polymer and magnetic nanoparticle composites with tunable magneto-optical activity: role of nanoparticle dispersion for high verdet constant materials

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2020
Accepted
10 Mar 2020
First published
10 Mar 2020

J. Mater. Chem. C, 2020,8, 5417-5425

Author version available

Polymer and magnetic nanoparticle composites with tunable magneto-optical activity: role of nanoparticle dispersion for high verdet constant materials

N. G. Pavlopoulos, K. S. Kang, L. N. Holmen, N. P. Lyons, F. Akhoundi, K. J. Carothers, S. L. Jenkins, T. Lee, T. M. Kochenderfer, A. Phan, D. Phan, M. E. Mackay, I. B. Shim, K. Char, N. Peyghambarian, L. J. LaComb, R. A. Norwood and J. Pyun, J. Mater. Chem. C, 2020, 8, 5417 DOI: 10.1039/D0TC00077A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements