Jump to main content
Jump to site search


Metal Oxide Resistive Memory with a Deterministic Conduction Path

Abstract

Resistive random access memories (RRAM) with minimal power dissipation, high speed, and matrix-vector multiplication capability are potentially ideal for data-centric applications such as neuromorphic computing. However, RRAMs still suffers from instability caused by uncontrolled filament growth and random oxygen vacancy distribution. In this study, Ge–Sb–Te ternary chalcogenide layer that functions as a conductive lead is added to the HfO2-based RRAM layer to confine the subsequent filament formation to the initially determined site. Based on DC and pulse measurement data, this technique is confirmed to improve memory switching reproducibility without compromising its endurance and retention. Such deterministic behavior will be important in improving the sensing margin and multi-level capability of RRAM technology as the switching characteristics become more unstable with extreme device scaling.

Back to tab navigation

Supplementary files

Article information


Submitted
24 Dec 2019
Accepted
05 Feb 2020
First published
06 Feb 2020

J. Mater. Chem. C, 2020, Accepted Manuscript
Article type
Paper

Metal Oxide Resistive Memory with a Deterministic Conduction Path

S. Lee, S. Seo, J. Lim, D. Jeon, B. Alimkhanuly, A. Kadyrov and S. Lee, J. Mater. Chem. C, 2020, Accepted Manuscript , DOI: 10.1039/C9TC07001J

Social activity

Search articles by author

Spotlight

Advertisements