Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Green synthesis of reduced Ti3C2Tx MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity

Author affiliations

Abstract

Transition metal carbides (MXenes) are an emerging family of highly conductive two-dimensional materials with additional functional properties introduced by surface terminations. Further modification of the surface terminations makes MXenes even more appealing for practical applications. Herein, we report a facile and environmentally benign synthesis of reduced Ti3C2Tx MXene (r-Ti3C2Tx) via a simple treatment with L-ascorbic acid at room temperature. r-Ti3C2Tx shows a six-fold increase in electrical conductivity, from 471 ± 49 for regular Ti3C2Tx to 2819 ± 306 S m−1 for the reduced version. Additionally, we show an enhanced oxidation stability of r-Ti3C2Tx as compared to regular Ti3C2Tx. An examination of the surface-enhanced Raman scattering (SERS) activity reveals that the SERS enhancement factor of r-Ti3C2Tx is an order of magnitude higher than that of regular Ti3C2Tx. The improved SERS activity of r-Ti3C2Tx is attributed to the charge transfer interaction between the MXene surface and probe molecules, re-enforced by an increased electronic density of states (DOS) at the Fermi level of r-Ti3C2Tx. The findings of this study suggest that reduced MXene could be a superior choice over regular MXene, especially for the applications that employ high electronic conductivity, such as electrode materials for batteries and supercapacitors, photodetectors, and SERS-based sensors.

Graphical abstract: Green synthesis of reduced Ti3C2Tx MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity

Back to tab navigation

Supplementary files

Article information


Submitted
22 Dec 2019
Accepted
03 Mar 2020
First published
04 Mar 2020

J. Mater. Chem. C, 2020, Advance Article
Article type
Paper

Green synthesis of reduced Ti3C2Tx MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity

T. B. Limbu, B. Chitara, J. D. Orlando, M. Y. Garcia Cervantes, S. Kumari, Q. Li, Y. Tang and F. Yan, J. Mater. Chem. C, 2020, Advance Article , DOI: 10.1039/C9TC06984D

Social activity

Search articles by author

Spotlight

Advertisements