Jump to main content
Jump to site search


Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor

Author affiliations

Abstract

The strategy of using ternary blends for the active layer becomes increasingly important in single-junction organic solar cells (OSCs), particularly for boosting the performance of high-performance non-fullerene-based devices. In this work, a non-fullerene small molecule named IT-4F with a moderate bandgap (1.58 eV) is introduced as the third component into the PBDB-T-2Cl:IXIC-4Cl binary blend, where IXIC-4Cl is a low-bandgap acceptor with absorption up to ∼1000 nm. Compared to the 11.99% and 13.47% efficiencies for the binary devices based on PBDB-T-2Cl:IXIC-4Cl and PDBD-T-2Cl:IT-4F, respectively, the ternary OSCs achieve a power conversion efficiency (PCE) of 14.96% when the weight ratio of PBDB-T-2Cl:IXIC-4Cl:IT-4F is 1.0 : 0.3 : 0.7. Through device and film characterization, IT-4F is shown to be an effective third component with functionalities including modulating the electronic properties, adjusting the frontier orbital energy levels, complementing the absorption spectrum and improving the active-layer morphology, which lead to significantly increased open-circuit voltage (VOC), short-circuit current (JSC) and fill factor (FF). Our method could be employed as a general approach to enhance the performance of nonfullerene OSCs based on low-bandgap small molecule acceptors.

Graphical abstract: Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor

Back to tab navigation

Supplementary files

Article information


Submitted
20 Nov 2019
Accepted
13 Dec 2019
First published
17 Dec 2019

J. Mater. Chem. C, 2020, Advance Article
Article type
Communication

Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor

R. Ma, Y. Chen, T. Liu, Y. Xiao, Z. Luo, M. Zhang, S. Luo, X. Lu, G. Zhang, Y. Li, H. Yan and K. Chen, J. Mater. Chem. C, 2020, Advance Article , DOI: 10.1039/C9TC06362E

Social activity

Search articles by author

Spotlight

Advertisements