Jump to main content
Jump to site search


Fabrication of Ag-Cu2O/PANI nanocomposites for visible-light photocatalysis triggering super antibacterial activity

Abstract

The Ag-Cu2O/ PANI composite material was synthesized in a simple, fast, and low-cost process, which was attractive for its many applications in the fields of photocatalysis, surface enhanced Raman scattering (SERS), and characterization. SEM, TEM, XRD, FT-IR, TG, UV-Vis and XPS measurements confirmed the successful synthesis of the Ag-Cu2O/PANI composite material. First-principle calculations on the basis of density functional theory (DFT) were used to analyze regulation of work function of Cu2O. The results showed that the Ag-Cu2O/PANI had an extremely high stability when exposed to oxygen, water, and light for a long period of time, which was attributed to the physical coating of Ag nanoparticles (Ag NPs) transferring the electrons (e-) and holes (h+) inside the Cu2O to the surface through the Schottky barrier to prevent photocorrosion. The deposition of Ag NPs also increased the intensity and time of oxidative stress reaction of Cu2O, as evidenced by reactive oxygen species (ROS) test. Ag NPs distributed on the surface of Cu2O particles formed a large of ion release channels, resulting in an excellent sustained release of Cu2+ ions. PANI as a protective barrier prevented Cu2O from directly contacting the external solution and releasing Cu2+ ions. PANI had an excellent e- transfer ability as a conductive polymer, which improves the efficiency of photogenerated e- and h+ separation of Cu2O. Our results showed the Ag-Cu2O/PANI exhibited a high long-term antibacterial activity against S. aureus and P. aeruginosa, bacterial inhibition rates of which were maintained around 78% and 80% after stored in phosphate buffer saline (PBS) solution for 30 days. In this paper, the Ag-Cu2O/PANI is proposed which can enhance photocatalytic performance of Cu2O and long-term antibacterial activity.

Back to tab navigation

Supplementary files

Article information


Submitted
30 Oct 2019
Accepted
27 Dec 2019
First published
30 Dec 2019

J. Mater. Chem. C, 2020, Accepted Manuscript
Article type
Paper

Fabrication of Ag-Cu2O/PANI nanocomposites for visible-light photocatalysis triggering super antibacterial activity

C. Ma, Z. Yang, W. Wang, X. Hao, M. Zhang, S. Zhu and S. Chen, J. Mater. Chem. C, 2020, Accepted Manuscript , DOI: 10.1039/C9TC05891E

Social activity

Search articles by author

Spotlight

Advertisements